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Abstract-This paper pre:sents a new mathematical model to investigate the free vibration of
laminated composite shallow conical shells in an effort towards accurate modelling of tm­
bomachinery blades. The shells are composed of symmetrically or unsymmetrically laminated
composites. This study focuses on E-glassjepoxy conical shells with four and eight-ply laminates,
but the analysis can be easily extended to any composites with an arbitrary number of plies and
fibre orientation. The energy integral expression is derived on the basis of the shallow shell theory
incorporating variable chordwise surface curvature. A global computational approach based on the
extremum energy principle is employed to derive the eigenvalue equation. A flexible, admissible
global shape function is developed to account for the geometric boundary conditions. Previously
unavailable frequency parameters and vibration mode shapes are presented. © 1998 Elsevier Science
Ltd.

1. INTRODUCTION

Fibre reinforced composite laminates are increasingly used in many engineering disciplines
for many products ranging from tiny to huge scales which require higher strength, more
durability and less weight such as micro-mechanical components, aircraft and space
vehicles. There are virtually unlimited ways of tailoring the mechanical properties of
laminated composites to suit design requirements.

A vast literature is available on the vibration of shells. Most studies are confined to
cylindrical or spherical shells with a constant radius of curvature (Cheung and Cheung,
1972; Fan and Cheung, 1983; Cheung et al., 1989; Li et al., 1990). Only a limited number
of references are available for shells of other shapes, such as the cambered helicoidal shells
by Walker (1978) and the conical shells by Srinivasan and Krishnan (1987) and Srinivasan
and Hosur (1989). A review of the vibration of conical shells has been given by Chang
(1981).

Studies of laminated composite shells have mainly focused on closed cylindrical and
spherical shells, as reviewed by Kapania (1989) and Mirza (1991), because of their practical
importance in the aerospace, petrochemical and nuclear industries. Mirza (1991) surveyed
recent research on the vibration of laminated shells, assessing works published on free,
forced vibration and dynamic response of layered shells. This review covers studies of
analytical techniques, finite element analyses and experimental methods. Non-linear and
large deformation effects were also presented.

Turbomachinery blades are conventionally modelled as beams (Carnegie, 1959), plates
(Liew and Lim, 1994a; Lim and Liew, 1995a) and cylindrical shallow shells (Liew and
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Fig. 1. Geometry of a laminated CFFF shallow conical shell.

Lim, 1994b). In Liew and Lim (l994a) and Lim and Liew (l995a), the vibration ofa blade
is modelled as a pret\\;isted plate with a trapezoidal planform. In another effort by Liew
and Lim (l994b), the vibration of cylindrical shells with generally varying thickness has
been investigated. One major deficiency of the cylindrical shallow shell model is the constant
chordwise curvature. An actual turbomachinery blade should feature a shallow shell with
both non-uniform planform and variable chordwise curvature. Thus an open conical shell
model is more appropriate. Vibration of open conical shells has been reported by Lim and
Liew (l995b) for isotropic, untwisted shells with uniform thickness.

The design of a turbomachinery blade is seldom confined to isotropic materials. Very
frequently composite materials are preferred due to the advantages in strength, durability
and weight. To the authors' knowledge, the vibration of laminated composite turbo­
machinery blades has not been undertaken using a shallow conical shell model. To fill this
apparent void, a laminate-composite model with theory and solution methods has been
developed to investigate the effects of symmetric and unsymmetric lamination on the
vibration characteristics of cantilevered, open shallow conical shells. The Ritz energy
principle is employed to formulate the governing eigenvalue equation and the kinematically
orientated admissible pb-2 shape functions, developed by Liew and Lim and their associates
(Liew and Lim, 1994a,b; Lim and Liew, 1995a,b), are further extended to laminated
composite shells with multiple plies. Previously unavailable results covering a wide range
of shell geometric and laminate configurations are presented for design applications and
future comparison.

2. THEORETICAL CONSIDERATIONS

2.1. Problem definition
Consider a homogeneous, isotropic, thin shallow conical shell with midsurface length

a, reference width bo, thickness h, cone length s, vertex angle e" base subtended angle eo as
illustrated in Fig. 1. The cone base can be assumed as elliptical with minor and major radii
(xo and Po since the shell is shallow. The radius of curvature in the chordwise direction
R,.(x, y) is a parameter varying in the x- and y-directions. The variation of Ry(x, y) in the
x~direction is linear. There is no curvature along the spanwise direction (Rx = 00). This
cantilevered shell is clamped along x = O.

The midsurface geometry of a shallow conical shell with a trapezoidal planform is
rather complex. From Fig. 1, the reference major radius and the major and minor radii P
and (X at any vertical cross-section is

(la)

(lb)
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(Ic)

(2a)

(2b)

The equation of an ellipse at any perpendicular cross-section is

(3)

Taking the first and second derivatives of z with respect to y and making use of the definition
k = (d 2z/ dy2)/[1 + (dz/ dy)2j3/2, the chordwise radius of curvature is

2.2. Mathematical formulation
The total strain energy Olf of a laminated conical shell can be expressed as:

Olf = Olfor +Olfes +Olfbs +Olfbt

(4)

(5)

where the strain energy of uncoupled orthotropic characteristics of the material (i.e. All>

A J2 , A 22, A 66 , D ll , D J2 , D22 and D66) is

strain energy of extension-shearing coupling (i.e. A 16 and A 26) is
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A 26 au A 26 av }+ w+ ~ W dxdy
Ry(x,y) ay Ry(x,y) ox

strain energy of bending-stretching coupling (i.e. Bij, i,j = 1, ... ,6) is

aua2w au a2w ava2w ava2w
+B266y ay2 +2B66 ay axay +B12 ay ax2 +Bn ay ay2

av a2w av a2w av a2w av a2w
+B I6a-;: ax2 +2B26 ay axay +B26 ax ay2 +2B66 ax axay

B p a
2w Bp a2w 2B26 a2W}+ --'---- w-- + - w-- + w-- dx dy

Ry(x,y) ax2 Rv(x,y) ay2 RAx,y) ax ay

and strain energy of bt:nding-twisting coupling (i.e. D I6 and D26) is

If { a2 W a2W a2W a2W}
OlIbt = 2 D I6 --2 -aa +D26 --2 -aa dxdy

A ax x y ay x y

(6b)

(6c)

(6d)

where the integration is on the planform area A of the shallow conical shell. The laminate
stiffness coefficients A ii, Bij and Dij for the k-ply are (Vinson and Sierakowski, 1986).

n

Au = I (Quh(hk - hk - 1), (i,j = 1,2,6)
k~1

(7a)

(7b)

(7c)

in which Qij (i,j = 1,2, 6) is the transformed stiffness depending on the ply stiffness constant
Qu (i,j = 1,2,6) and fibre orientation angle. The bending-stretching coupling vanishes
(Bu = 0) for symmetrically laminated shells.

The kinetic energy for free vibration is given by

(8)

where p is the mass density per unit volume and OJ is the rotational frequency.
The in-plane and transverse displacement amplitude functions can be approximated

by a series of orthogonally generated two-dimensional polynomials
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m

U(~, Y/) = L cr(t>r(~, Y/)
;= 1

m

V(~, Y/) = L q(M(~, Y/)
i=l

m

W(~, Y/) = L C7cP7(~, Y/)
i= I
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(9a)

(9b)

(9c)

where cr, q and C7 are the unknown coefficients and cPr, cPr and cP7 are the corresponding
admissible pb-2 shape functions in terms of a non-dimensional coordinate system defined
as

x y
~=-, Y/=-

a bo
(lOa,b)

in which a and bo are the span and width of the shell as shown in Fig. 1.
The maximum strain energy Oltmax and the maximum kinetic energy !!imax in a vibratory

cycle occur at maximum and zero displacements, respectively. Following the Ritz extremum
energy principle, the energy functional

:F = Oltmax - !!imax (11)

is minimized with respect to the unknown coefficients to obtain the following eigenvalue
equation:

where K and M are the stiffness and mass matrices expressed as :

(12)

[

kUU

K-
sym

[

muu

M=

sym

the vector of unknown coeffilcients is

k VV

[0]
[0] ]
[0]

mWw

(13a)

(l3b)

and the non-dimensional frequency parameter is

(I3c)

(l4a)

(14b)
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where p is the density per unit volume, Ell is the Young's modulus along the fibre, and VI2

and V21 are the Poisson's ratios. The elements in the stiffness and mass matrices (Lim and
Liew, 1995b) are given in the Appendix.

The admissible pb-2 shape functions introduced in eqns (9a--e) consist of the product
of terms of a two-dimensional orthogonally generated polynomial (p-2) and appropriate
basic functions (b), i.e:.

where

in which IX = U, v or wand

;-1

¢~(~,rJ) =j;(~,rO¢'b-L '8ij¢j
j=1

lLiij = fLt:(~''7)¢'b¢jd~d'7
2 Lij = fL(¢w d~ d'7

(15)

(16a)

(l6b)

(l6c)

(l6d)

form a complete set of p-2 functions. Note that IX here is only a dummy variable which is
not related to the minor radius in Fig. 1. The basic functions are ¢'b (IX = U, v or 11') defined
as the products of th,~ equations of the continuous piecewise boundary geometries of the
shell planform each of which is raised to an appropriate basic power that corresponds to
its geometric boundary condition.

In this study, the basic functions for the cantilevered conical shallow shell are

(l7a,b,c)

which satisfy the geometric boundary conditions at the clamped edge ~ = O.

3. EXAMPLES AND DISCUSSION

Some numerical examples including convergence, comparison studies and vibration
mode shapes are presented in this section. The composite considered in E-glassjepoxy with
the following material properties:

E-glassjepoxy (EjE)

Ell = 60.7GPa

E22 = 24.8 GPa

G12 = 12.0 GPa

V12 = 0.23.

The shells are c1ampt:d along ~ = 0 and free on the other edges, denoted as CFFF.
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Table 1. Convergence of A. = ma•...!P(EII for a CFFF E-glass(epoxy shallow conical shells with a(h = 100.0,
a(bo = 1.5, Ov = 15° and Or = 30°

p Mode frequencies
Lamination 00 u v w 2 3 4

[( - Or, Or)2l,ym 10° 11 11 II 0.015548 0.030968 0.078872 0.10133
II 11 13 0.015547 0.030964 0.078865 0.10132
11 11 15 0.015546 0.030962 0.078861 0.10131
11 13 15 0.015545 0.030961 0.078856 0.10131
11 15 15 0.015544 0.030961 0.078854 0.10131
13 15 15 0.015543 0.030961 0.078851 0.10131
15 15 15 0.015543 0.030961 0.078849 0.10131

20° 11 11 11 0.027338 0.033318 0.10989 0.11458
111113 0.027337 0.033314 0.10988 0.11457
11 11 15 0.027337 0.033312 0.10987 0.11456
11 13 15 0.027333 0.033311 0.10987 0.11455
11 15 15 0.027331 0.033310 0.10987 0.11455
13 15 15 0.027330 0.033310 0.10987 0.11455
15 15 15 0.027329 0.033310 0.10987 0.11455

30° 11 11 11 0.035957 0.040272 0.12082 0.13010
11 11 13 0.035953 0.040271 0.12080 0.13009
11 11 15 0.035952 0.040270 0.12080 0.13008
11 13 15 0.035950 0.040265 0.12079 0.13008
11 15 15 0.035949 0.040262 0.12079 0.13008
13 15 15 0.035949 0.040260 0.12079 0.13008
15 15 15 0.035949 0.040259 0.12079 0.13008

[( - Or, Or)41,ym 10° 11 11 11 0.015629 0.031381 0.079268 0.10422
11 11 13 0.015628 0.031377 0.079260 0.10421
11 11 15 0.015627 0.031374 0.079255 0.10420
11 13 15 0.015625 0.031373 0.079250 0.10419
11 15 15 0.015625 0.031373 0.079248 0.10419
13 15 15 0.015624 0.031373 0.079245 0.10419
15 15 15 0.015624 0.031373 0.079243 0.10419

20° 11 11 11 0.027438 0.033600 0.11243 0.11484
111113 0.027436 0.033596 0.11241 0.11483
11 11 15 0.027436 0.033593 0.11240 0.11482
11 13 15 0.027432 0.033592 0.11240 0.11482
11 15 15 0.027430 0.033592 0.11240 0.11482
B 15 15 0.027429 0.033591 0.11239 0.11481
15 15 15 0.027428 0.033591 0.11239 0.11481

30° 11 11 11 0.036391 0.040190 0.12343 0.12945
11 11 13 0.036387 0.040188 0.12342 0.12944
11 11 15 0.036385 0.040188 0.12341 0.12944
II 13 15 0.036383 0.040183 0.12340 0.12944
II 15 15 0.036382 0.040180 0.12340 0.12943
13 15 15 0.036382 0.040178 0.12340 0.12943
1~; 15 15 0.036382 0.040177 0.12340 0.12943

3.1. Convergence study
The convergence of eigenvalues for a cantilevered conical shell with 4- and 8-ply

symmetric laminations is presented in Table I. The degree p of the admissible pb-2 shape
functions for u, v and w increases from II to 15. The number of terms m for u, v and w as
expressed in eqn (16d) is related to the power by m = (p+ I)(p+ 2)/2. The total number of
terms in the admissible pb-2 shape functions in Table I increases from (78 + 78 + 78) to
(136+ 136+ 136) and the determinant size of the eigenvalue equation (12) increases from
(78+ 78+ 78) x (78+ 78+ 78) to (136+ 136+ 136) x (136+ 136+ 136).

Excellent convergence of eigenvalues can be observed in Table I. The eigenvalues
converge downwards as the degree ofpb-2 functions is increased. Increasing the number of
terms in the pb-2 functions results in shape functions with the higher flexibility. The shell
stiffness and vibration frequencies are thus lower. From Table 1, p = 15 for u, v and w is
adequate to provide excellent convergent frequencies. Unless otherwise stated, all sub­
sequent numerical results are computed using p = 15 or m = 136 for each of the displace­
ments.
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Table 2. Frequency paramet<:rs). = waJpiE I I for a CFFF E-glass/epoxy shallow conical shells with alh = 100.0,
albo = 1.5, Oy = 15° and 00 = 30°

Mode frequencies
Lamination Or 2 3 4

[( - Or, Or)2l,ym 0 0.033727 0.044772 0.12099 0.12207
15 0.034688 0.043762 0.12107 0.12473
30 0.035949 0.040259 0.12079 0.13008
45 0.034834 0.036298 0.11712 0.13574
60 0.032148 0.033685 0.11017 0.13669
75 0.030752 0.031168 0.10277 0.13404
90 0.029683 0.030690 0.099392 0.13229

[( - Or, Or)2lun,ym 0 0.033727 0.044772 0.12099 0.12207
15 0.034638 0.043723 0.12223 0.12366
30 0.036082 0.040105 0.12319 0.12826
45 0.035393 0.036092 0.11994 0.13451
60 0.032286 0.034065 0.11233 0.13649
75 0.031013 0.031146 0.10354 0.13400
90 0.029683 0.030690 0.099392 0.13229

[( - Or, OD,l,ym 0 0.033727 0.044772 0.12099 0.12207
15 0.034792 0.043752 0.12223 0.12423
30 0.036382 0.040177 0.12340 0.12943
45 0.035304 0.036501 0.12026 0.13572
60 0.032280 0.034270 0.11262 0.13718
75 0.030985 0.031248 0.10367 0.13427
90 0.029683 0.030690 0.099392 0.13229

[( - 0" Or),lu",ym 0 0.033727 0.044772 0.12099 0.12207
15 0.034780 0.043742 0.12270 0.12378
30 0.036418 0.040135 0.12417 0.12880
45 0.035415 0.036473 0.12101 0.13536
60 0.032302 0.034372 0.11316 0.13712
75 0.031026 0.031266 0.10386 0.13425
90 0.029683 0.030690 0.099392 0.13229

3.2. Numerical results and mode shapes
New results for the non-dimensional frequency parameters A, defined in eqn (14b), of

CFFF E-glassjepoxy conical shallow shells are presented in Table 2 and Figs 2-5. Four
types oflaminations are considered: the 4- and 8-ply symmetric and unsymmetric laminates
are considered in Table 2 where the fibre angle (Jr ranges from 0 to 90°. The first four
vibration frequencies are presented in an ascending order. Attention will be focused on the
effects of these parameters on the fundamental vibration frequency.

It is observed in Table 2 that the number of plies and layer lamination generally have
minor effects on the vibration frequencies. The frequencies for 4- and 8-ply, symmetric and
unsymmetric laminations differ by about 2% or less. For (Jr = 0° and 90°, the frequencies
are correspondingly identical because the fibres are aligned in the x- or y-directions,
respectively, and the multiple-ply laminate is equivalent to a single-ply laminate. Increasing
the number of plies for a laminate generally increases the fundamental A slightly, but the
effect is not very significant. Only results for 4-ply symmetric laminates are presented
subsequently.

The effect of (}f on frequency response for shells with a base subtended angle (}o = 10,
20 and 30° are shown in Figs 2--4 while the effect ofvarying (}o is shown in Fig. 5. Comparison
of finite element solutions for the fundamental frequency is also presented in Figs 2--4. The
FE solutions were obtained using LUSAS (a finite element package) with 15 x 30 semiloof
elements. Convergence of the FE solutions have been tested. As observed, the Ritz solutions
presented in this analysis agree well with the FE solutions. The analysis using the Ritz
method requires far less computational effort (10% or less) than the finite element method
(FEM). Only the fundamental frequency of the FEM is presented because it takes, com­
paratively, much longt:r time to obtain converged higher mode frequencies.
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Fig. 2. Vibration frequency for a CFFF 4-ply E-glassjepoxy shallow conical shell with ajh = 100.0,
albo = 1.5, Ov = 15%
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albo = 1.5. Ov = 15°, 00 = 20° and stacking sequence [( - Or, Orhl,ym.
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Fig. 6. Midsurface vibration mode shapes for a CFFF 8-ply E-glassjepoxy conical shallow shell
with ajh = 100.0, ajbo = 1.5, Ov = 15°,00 = 30°, Or = 45°.

In Fig. 5, an increase in eo increases the first four mode frequencies. It is expected
because an increase in eo indicates an increase in the deepness of a shell and it has been well
understood that the stiffness and frequencies ofdeeper shells is higher than shallower shells.

A set of midsurface vibration mode shapes is illustrated in Fig. 6. These correspond to
the CFFF conical shell with 8-ply symmetric and unsymmetric laminations. To enhance
the physical aspects of vibration, this mode shape figure illustrates the contour as well as
three-dimensional midsurface displacement. The shaded and unshaded contour regions
refer to regions with opposite vibration amplitude: one positive and the other negative.
The lines ofdemarcation are the nodal lines with zero vibration amplitude. The fundamental
mode in Fig. 6 is a spanwise bending mode while the second mode is a twisting mode. The
third and fourth modes are coupled bending and twisting modes.

4. CONCLUSIONS

An analysis with computational solutions for the vibration of laminated shallow
conical shells has been presented. Ritz energy principle has been employed to formulate the
governing eigenvalue equation. The displacement amplitude functions have been approxi­
mated by geometrically admissible pb-2 shape functions. These functions ensure satisfaction
of the geometric boundary conditions at the outset.

Previously unavailable, free vibration frequencies for shallow conical shells have been
presented. The results cover various geometric and lamination parameters. Numerical
solutions show that an increase in base subtended angle increases the vibration frequency.
The effects of lamination symmetry and number of plies are minor, but laminates with
more plies have slightly higher fundamental vibration frequency.
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APPENDIX

The elements in the stiffness and mass matrices (Lim and Liew, 1995b) are:

b2A bA 2A
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(All)
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and i, j = 1,2, ... ,m where m depends on the degree of polynomial. The reference plate flexural rigidity is
Do = E1,h3/12(l-vl2v21)' The integration domain A is the normalized planform area of the shallow conical shell
in accordance to eqns (lOa, b).


